Elastic LiDAR Fusion: Dense Map-Centric CT-SLAM

Chanoh Park(Ph.D. Student), Peyman Moghadam, Soohwan Kim, Alberto Elfes, Clinton Fookes, Sridha Sridharan

ACRA 2017, Submitted to ICRA 2018

www.data61.csiro.au

DATA

CSIRO Supervisors: Peyman Moghadam, Alberto Elfes QUT Supervisors: Sridha Sridharan, Clinton Fookes, Jonathon Roberts

Introduction

Ref: https://youtu.be/gGrKbeLMGUU?list=PLObjxz0SzcZwAFJs-kZgLkkAL5dVNqBcC

State of the art in LiDAR SLAM

- Plenty have limitations
 - Trajectory-centric
 - No online loop closure
 - Offline operation
 - No fusion of redundant observations
 - Non-scalable
 - Difficulties in multi-modal sensor fusion
 - Map is discretised or full of redundant elements

State of the art

- Zebedee(2012), V-LOAM(2015)
 - Nicely handle LiDAR motion distortion

State of the art

• Google Cartographer(2014)

Introducing Elastic LiDAR Fusion

- First LiDAR based map-centric approach
 - Loop closure by map
 - Fuse all the measurements
- Easy multi-modal sensor fusion
 - We combine CT-SLAM with a map-centric approach
 - LiDAR-Inertial fusion is proposed

Corrected Trajectory

Corrected Trajectory

1.

2.

1.

2.

3.

Continuous-time local trajectory estimation

Find a new trajectory Reproject points cloud New scans become another map prior

Corrected Trajectory

How it works: Surfel Fusion

- Fuses surfels from the local window into the global map
 - Data association

- Surfel fusion
 - Normal, Centre, Colour with Bayesian Fusion

How it works:

Loop closure by deformation

- Previous two stages just keep building map
 - What about the loop closure?

How it works:

Loop closure by deformation

- Previous two stages just keep building map
 - What about the loop closure? -> Map deformation

How it works:

Loop closure by deformation

- Previous two stages just keep building map
 - What about the loop closure? -> Map deformation

Trajectory

DATA

$$\begin{aligned} \mathbf{e}_{loop} &= \sum \|\mathbf{p}'_{src} - \mathbf{p}_{dest}\|^2 \\ \mathbf{e}_{pin} &= \sum_{j} \|\mathbf{p}'_{dest} - \mathbf{p}_{dest}\|^2 \\ \mathbf{e}_{reg} &= \sum_{j} \sum_{k \in \mathbb{V}(\mathbf{g}_j)} \|\mathbf{R}_j(\mathbf{g}_k - \mathbf{g}_j) + \mathbf{g}_j + \mathbf{t}_j - \mathbf{g}_k - \mathbf{t}_k\|^2 \\ [\hat{\mathbf{R}}_j, \hat{\mathbf{t}}_j] &= \operatorname*{argmin}_{\mathbf{R}_j, \mathbf{t}_j \in SE(4)} \omega_{reg} \mathbf{e}_{reg} + \omega_{pin} \mathbf{e}_{pin} + \omega_{loop} \mathbf{e}_{loop} \end{aligned}$$

Loop closure detection

Graph for a deformation

Deformation constraints

Experiment results

Loop Closure Cost Comparison

How fast is our method?

Types	Optimization*	No.State	Elapsed Time (sec)
Proposed	Fig. 5 (i)	192	0.12
CT-SLAM [6]	Fig. 5 (ii)	3396	195.4

Trajectory Estimation Error

Surface Estimation Error

CSIRO

Location	No.Points	No.Surfel	CT-Err	Prop (mm)
а	47.8×10^{4}	3.7×10^{3}	16.08	7.72
b	37.8×10^{4}	4.1×10^{3}	15.78	5.79
с	40.6×10^{4}	3.8×10^{3}	16.43	10.39
d	56.3×10^{4}	3.8×10^{3}	19.40	13.07
	Less noise			

Small map

Multi-Floors

Indoor outdoor mixed

Surfel Scene Representation

Colour Img

Synthesized Img

Normal map

Disparity map

Demo video

Summary

- Long-term mapping
 - Loop closure by map deformation
 - No global batch optimization at the end
 - Fusion of LiDAR estimations
 - Map size is dependent on space. Not time!
 - Accurate map estimation
- Easy handling of asynchronous, high-rate sensor fusion and motion distortion

Question?

DATA

61

www.data61.csiro.au

Surfel Scene Representation

