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Figure 2: Illustration of geometrical constraints on the local
trajectory. Instead of directly optimizing trajectory, we seek for
the low frequency correction of the trajectory for efficiency.

We have utilized surfel based
trajectory correction proposed in
[1]. While removing the global
trajectory optimization, we
introduced a map prior constraint
to be able to bring the model-
based localization into the local
trajectory optimization. The map
prior is achieved from the past
windows.
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Problem Statement

We present a new approach for LiDAR-based dense 3D mapping by combining map-centric approach with continuous-
time SLAM. The proposed system is capable of reconstructing a large-scale high-quality dense surface element (surfel)
map from spatially redundant multiple views.
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Proposed Method

3D Ellipsoidal Surfel Map 2D Disk Surfel Map
from Multi-resolutional Voxel Hassing from Nearest Neighbor Searching

Conclusion

Figure 5: Illustration of surfel matching problem
between a local map surfel and the global map
surfels. Refer to [2] for more details.

Figure 6: Proposed two stage matching algorithm. Step1 controls
map resolution whereas step2 reduces map noise by searching
deeper along the LiDAR beam direction.
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A new approach for dense LiDAR-based map-centric CT-SLAM was
presented. The proposed system utilizes map deformation as a way for
maintaining global map consistency instead of conventional global batch
trajectory optimization to improve the applicability of the conventional CT-
SLAM in long-term operation applications.

Figure 10: The experimental handheld
3D spinning LiDAR for mobile mapping.

Figure 9: Qualitative trajectory comparison between the global trajectory
optimization (blue line) and the proposed method (red line). (a) Top view.
(b) Side view. Note that the trajectory includes two traverses.

The concept of Continuous-Time (CT) trajectory representation has brought
increased accuracy and efficiency to multi-modal SLAM. However, regardless
of these advantages, its offline property caused by the requirement of global
batch optimization is critically hindering its relevance for real-time and life-
long applications. In this paper, we present a dense map-centric SLAM
method based on a CT trajectory to cope with this problem.

System Overview

Map Representations 

Figure 4: (a) Example of a 3D ellipsoid surfel map with a 60cm resolution which is dedicated for localization and (b) a 2D
disk surfel map with a 1cm resolution for dense reconstruction. Both are color-coded by normal directions. Recognize the
ceiling and the floor in blue, and objects and walls in orange and green.

Figure 1: System block diagram of our method. The device local trajectory is tracked in the Local Mapping stage, while the
global consistent map is maintained in the second Global Mapping stage.

Figure 11: [Left] Reconstructed 3D surfel map of a 20x20 meter office. The details of the reconstructed map around the
circled area is shown on the right side. [Right] (a) Raw camera image of the office around the red circle. (b) Synthesized
image from the surfel map. (c) Surfel map colored with normal direction. (d) Rendered depth image from the surfel map.
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Figure 7: Active fusion window. (a) A map including a
loop closure. (b) Fusion at the loop. Before the fusion
(upper) and after the fusion (lower) (c) Fusion only
within an active window (solid green lines). (d)
Misalignment detection between inactive (solid black
lines) and active area.

Figure 8: Scanning trajectory and deformation graph of Figure.
11. [left] Scanning path. Our proposed method closes a loop at
(i) whereas CT-SLAM does at the end of the trajectory (ii). As
the state dimension of the deformation graph is a function of
space size, the proposed method is suitable for a long-term
operation. [right] Constructed deformation graph.

Figure 3: Visualization of the map prior and the point cloud input from LiDAR. The point cloud is voxelized and divided into
different groups according to its time of generation. Extracted spatial features by PCA form a surfel and then utilized to find
a matched surfels. Third figure shows an example of two pairs of matched surfaces constraints.
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